

PRODUCT CODE

TISOPLEN C 40 D05 R01

PRODUCT DESCRIPTION

PPH, 40% GLASS BEADS REINFORCED, NATURAL

Ţ	PROPERTIES	CONDITION	STANDARD	UNITS	VALUE
SICA	DENSITY	-	ISO 1183	g/cm ³	1.19-1.22
ξ	MOLDING SHRINKAGE	PARALLEL	ISO 294-4	%	0.25-0.50
-	MOISTURE CONTENT	-	ISO 15512	%	<0.1

	PROPERTIES	CONDITION	STANDARD	UNITS	VALUE
SAL	YIELD STRENGTH	+23°C	ISO 527-2	MPa	18-30
ANIC	TENSILE STRESS AT BREAK	+23°C	ISO 527-2	MPa	-
ᇙ	TENSILE STRAIN AT BREAK	+23°C	ISO 527-2	%	>5
ME	TENSILE MODULUS	+23°C	ISO 527-2	MPa	2000-3000
	IZOD IMPACT STRENGTH, NOTCHED	+23°C	ISO 180/A	kJ/m²	3-5

\L	PROPERTIES	CONDITION	STANDARD	UNITS	VALUE
	VICAT SOFTENING TEMPERATURE	50 N	ISO 306	°C	-
RMA	HEAT DEFLECTION TEMPERATURE	0,45 MPa	ISO 75	°C	-
뽀	HEAT DEFLECTION TEMPERATURE	1,80 MPa	ISO 75	°C	-
-	MELTING TEMPERATURE	10 K/min	ISO 11357	°C	165
	BALL PRESSURE TEST	-	ISO 60695-10-2	-	-

PRODUCT CODE

TISOPLEN C 40 D05 R01

PRODUCT DESCRIPTION

PPH, 40% GLASS BEADS REINFORCED, NATURAL

ĭ	PROPERTIES	CONDITION	STANDARD	UNITS	VALUE
AMMABIL	FLAME RATING	0,75 mm	UL 94	-	НВ
Ž Z	FLAME RATING	1,6 mm	UL 94	-	НВ
&FLA	GLOW WIRE FLAMMABILITY INDEX	2 mm	IEC 60695	°C	-
AL&	GLOW WIRE IGNITABILITY TEMPERATURE	2 mm	IEC 60695	°C	-
CTRIC/	COMPARATIVE TRACKING INDEX	Solution A	ISO 60112	Volt	600
	VOLUME RESISTIVITY	-	IEC 60093	Ohm.cm	1E+15
ELE	SURFACE RESISTIVITY	-	IEC 60093	Ohm	1E+15

	ÖZELLİKLERİ	BIRIM	DEĞER
	PREDRYING TEMPERATURE	°C	80
ESS	PREDRYING TIME	Hours	1-2
PROCESS	MELTING TEMPERATURE	°C	210-230
	NOZZLE TEMPERATURE	°C	230
<u>0</u>	PRE- 3 REGION TEMPERATURE	°C	200-240
INJECTION	MID-2 REGION TEMPERATURE	°C	200-240
3	AFT-1 REGION TEMPERATURE	°C	150-180
	MOLD TEMPERATURE	°C	40-70
	HOLD PRESSURE	MPa	50-100

Data are based on dry conditions

To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. Any values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design. Colorants or other additives may cause significant variations in data values. Properties of molded pans can he influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. It is the sole responsibility of the users investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Call Customer Services for the appropriate Material Safety Data Sheets (MSDS) before attempting to process our products.

